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př́ıjemci dat.
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Chapter 1

Introduction

Freedom to exchange information derives from the freedom of speech; un-
fortunately, there are many countries where this basic human right is not
guaranteed. Turtle is a peer-to-peer data sharing architecture that makes
very hard to restrict the freedom to exchange information by either technical
or legal means.

The design of Turtle is inspired by the way how people living under op-
pressive regimes share information deemed hostile by their government. Be-
cause of the potentially very serious consequences raising from being caught
possessing or distributing such material, no single individual is willing to
share it, except with close friends. Experience has repeatedly shown that,
even in the most repressive environments, this friends-to-friends delivery net-
work is remarkably effective in disseminating information, with relatively lit-
tle risks for the participating parties; if one chooses his friends carefully, the
chance of being caught doing the forbidden exchanges becomes very small.

The idea behind Turtle is to take this friend-to-friend exchange to the
digital world, and come up with a peer-to-peer architecture allowing private
and secure sharing of sensitive information between a large number of users,
over an untrusted network, in the absence of a central trust infrastructure.

There are three main contributions of this thesis. First, the model of Tur-
tle described in [26] has been extended by adding support for virtual circuits,
which makes sharing long files possible. Second, Turtle has been implemented
and a variety of performance measurements were performed on the implemen-
tation. The implementation includes many advanced features known from
other peer-to-peer file sharing applications, e.g. multisource downloading,
hash-links, bandwidth management or metadata querying. And the third
contribution is analysis of data from online community web site Orkut[25],
which verifies one of the assumptions made in [26].

The rest of this thesis is organized as follows. In Chapter 2 we discuss
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related work on peer-to-peer technologies. Chapter 3 explains model of Turtle
network. Software architecture of Turtle node and communication protocol
are described in Chapter 4. Performance measurements including discussion
of the results are presented in Chapter 5. In Chapter 6 we analyze data from
Orkut web site. Chapter 7 concludes the thesis and gives overview of future
work.



Chapter 2

Other peer-to-peer networks

Peer-to-peer technologies have recently gained extreme popularity among re-
searchers and users. There are many peer-to-peer networks already running
and even more peer-to-peer protocols proposed. In this chapter we will sum-
marize peer-to-peer technologies that are somewhat similar to Turtle.

2.1 Networks without anonymity

Peer-to-peer networks without anonymity do not try to hide identity of net-
work users. They are usually faster than networks with anonymity and that
is why they became popular especially for file sharing, where speed of search
and download is an important property. However, all these networks are
running into problems, because they are widely used for illegal sharing of
copyrighted digital products. Although most of the networks cannot be sim-
ply shut down, their users are sued for providing copyrighted material to
other users. Finding such user is as simple as joining the network and run-
ning a query. The network reveals IP addresses of users that answered the
query, which is sufficient to identify the users.

Napster [24] In 1999 the first massive file sharing network called Napster
was started. The network was not truly decentralized – it had cen-
tralized search servers that maintained index of all files available on
the network. Because of this feature, it was possible to shut down the
network due to violation of copyright laws.

FastTrack [22] After the Napster was shut down, FastTrack network with
its Kazaa client became the number one file sharing network. It does
not have any centralized servers – all nodes that join the network may
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become search servers if they have enough capacity (memory, band-
width, etc.).

Gnutella [20] Gnutella is another fully decentralized file sharing network.
Its communication protocol is not as good as FastTrack protocol, but
is fully documented. We will describe it in Section 2.1.1.

EDonkey2000 [11] The eDonkey file sharing network is decentralized peer-
to-peer network with two kinds of nodes – servers and clients. Clients
allow users to connect to the network and to share files. Servers act as
meeting hubs for the clients. Because the server network is changing
very often, there is a need for list of active servers. Such lists can be
found on various web pages.

2.1.1 Gnutella1

Gnutella is a decentralized peer-to-peer file sharing protocol developed in
2000 by Nullsoft. Gnutella development was halted shortly after its results
were made public, and the actual protocol was reverse engineered. Today
there are numerous applications that employ the Gnutella protocol in their
own individual way. The Gnutella Development Forum[9] was founded to
merge different branches of protocol into single standard.

Gnutella nodes (servents) perform tasks normally associated with both
servers and clients. They provide client-side interfaces through which users
can issue queries and view search results, they accept queries from other
servents, check for matches against their local files, and respond with corre-
sponding results. Servents are also responsible for managing the background
traffic needed to maintain network integrity.

In order to join the system a new node needs to know the IP address and
port of any servent that is already connected. There are several known hosts
that are almost always available and that can be initially connected. Once
attached to the network (having one or more open connections with nodes
already in the network), nodes send messages to interact with each other.
Messages can be broadcasted (i.e., sent to all nodes with which the sender
has open TCP connections) or back-propagated (i.e., sent on the reverse path
as the initial broadcasted message). Several features of the protocol facilitate
this broadcast/back-propagation mechanism:

1. Each message in the network has a unique identifier.

1This section is based on [28].
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2. Nodes keep a short list of recently routed messages, which is used to
prevent re-broadcasting and implement back-propagation.

3. Messages contain time-to-live counter that is decreased at every node
on the path. When the counter reaches zeto, message is dropped.

There are many kinds of messages in Gnutella network, however we will
concentrate only on a basic subset. The first two messages are network mem-
bership messages : ping and pong. A node joining the network announces
its presence by broadcasting ping message. Other nodes of the network reply
with pong messages, which are back-propagated to the new node. The pong
message contains information about the node such as its IP address and the
number and size of shared files. In the dynamic environment where Gnutella
operates, nodes often join and leave and network connections are unreliable.
To cope with this environment a node periodically pings its neighbours to
discover other participating nodes. Using information from received pong
messages, a disconnected node can always reconnect to the network.

File search is implemented using search messages : query and query
hit. Query message is broadcasted and contains a user specified search
string that each receiving node matches against locally stored file names.
Query hit is back-propagated reply to query message, which includes
information necessary to download a file (IP address, file name, etc.).

The downloading process is done using the HTTP protocol based on the
information extracted from the query hit message. Gnutella also supports
file transfers from nodes that are behind firewall and cannot be contacted
from outside world. Instead of downloading file from such node, push mes-
sage must be sent to the node. The node then initiates HTTP file upload
(which is usually possible even on firewalled nodes).

Many extensions of Gnutella protocol have been proposed and imple-
mented. The most important modification addresses the problem of network
scalability. Nodes are now divided into two groups: leaf nodes and ultrapeers.
Leaf nodes operate in the same way as described above. Ultrapeers run ad-
ditional algorithms that reduce the need for broadcasting ping and query
messages everywhere. Because node discovery and file searching is done in
a more efficient way, the networks is less loaded and is more scalable. The
decision which nodes become ultrapeers is done by the network itself. It is
dependent on the node capacity and on the current state of the network.
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2.2 Networks with anonymity

There are many technologies that provide anonymity to their users or at least
some of the users. These technologies bring anonymity into various services:
e-mail, web browsing, file sharing or file storing. None of them is as widely
deployed as non-anonymous file sharing peer-to-peer networks.

Anonymizer[2] Anonymizer is a http proxy that provides anonymity by
proxying requests for web content on the user’s behalf. It provides no
protection for producers of information and does not protect consumers
against logs kept by service itself.

Mixmaster[7] Mixmaster is an anonymous remailer used to deliver untrace-
able e-mails. It is based on Chaum’s mix network design[5]. Chaum
proposed hiding the correspondence between sender and recipient by
wrapping messages in layers of public-key cryptography, and relaying
them through a path composed of mixes. Each mix in turn decrypts,
delays, and re-orders messages, before relaying them onward. Mix net-
works are resistant against traffic analysis, however, if a corrupt mix
receives traffic from a non-core node, the mix can identify that node as
the ultimate origin of the traffic.

Tor[30] Tor implements and extends Onion Routing schema originally pro-
posed in [21]. Onion Routing is a distributed overlay network designed
to anonymize low-latency TCP-based applications such as web brows-
ing, secure shell, and instant messaging. Clients choose a path through
the network and build a circuit, in which each node (or onion router
or OR) in the path knows its predecessor and successor, but no other
nodes in the circuit. The design is very similar to mix networks and
suffers from same problem as described in previous paragraph.

Freenet[16, 6] Freenet is a self-organizing peer-to-peer network that pro-
vides file storage service. It focuses on providing anonymity for infor-
mation producers, holders and consumers. See Section 2.2.1 for detailed
description.

Tarzan[15] Tarzan is a peer-to-peer anonymous IP network overlay. Tarzan
achieves its anonymity with layered encryption and multihop routing,
much like mix networks. A message initiator chooses a path of peers
pseudo-randomly through a restricted topology in a way that adver-
saries cannot easily influence. Cover traffic prevents a global observer
from using traffic analysis to identify an initiator.
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2.2.1 Freenet2

Each Freenet user runs a node that provides the network some storage space.
To add a new file, a user sends the network an insert message containing the
file and its location-independent globally unique identifier (GUID), which
causes the file to be stored on some set of nodes. During file’s lifetime,
it might migrate to or be replicated on other nodes. To retrieve a file, a
user sends a request message containing the GUID. Request is routed using
steepest-ascent hill-climbing search (unlike Gnutella, which uses broadcasts).
Each node forwards request to the node that it thinks is closest to the target.
When the request reaches one of the nodes where the file is stored, that node
passes the data back to the request’s initiator.

Every Freenet node maintains a routing table that contains addresses of
other nodes and the GUIDs it thinks they hold. When a node receives a
query, it first checks its own store, and if it finds the file, returns it with a
tag identifying itself as the data holder. Otherwise, the node forwards the
request to the node in its table with the closest GUID to the one requested.
That node then checks its store, and so on. If the request is successful, each
node in the chain passes the file back and creates a new entry in its rout-
ing table associating the data holder with the requested GUID. Depending
on its distance from the holder, each node might also cache a copy locally.
To conceal the identity of the data holder, nodes occasionally modify reply
messages, setting the holder tags to point to themselves before passing them
back. Later requests will still locate the data because the node retains the
true data holder’s identity in its own routing table and forwards queries to
the correct holder.

A subsequent query for the same GUID will tend to converge with the
first request’s path. Locally cached copy can satisfy the query after that
happens. Subsequent queries for similar GUIDs will also jump over nodes
to one that has previously supplied similar data. Nodes that reliably answer
queries will be added to more routing tables, and will be contacted more
often than nodes that do not.

To limit resource usage, queries contain a time-to-live counter that is
decremented at each node. If the TTL expires, the query fails. If a cycle is
detected during query propagation, the message is back-propagated and the
node tries to use the next closest GUID instead of the previously used one. If
a node runs out of candidates to try, it reports failure back to its predecessor
on the path, which then tries its second choice, and so on.

Inserting files works in similar way as querying. An insert message follows
the same path that a request for the same key would take, sets the routing

2This section is based on [6].
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table entries in the same way, and stores the file on the same nodes.
Freenet GUIDs are calculated using SHA-1 secure hashes. The network

employs three main types of keys. The content-hash key (CHK) is the low-
level data-storage key and is generated by hashing the contents of the file to
be stored. The keyword-signed key (KSK) is derived from a short descriptive
chosen by the user when storing a file in the network. KSKs form a flat global
namespace, which has several problems, e.g. they do not prevent inserting
junk files under popular descriptions. The signed-subspace key (SSK) sets up
a personal namespace that anyone can read but only its owner can write to.
A user that owns the namespace publishes descriptive strings of files together
with subspace’s public key. Typically, SSKs are used to store indirect files
containing pointers to CHKs rather than to store data files directly (like
filenames and inodes in a conventional file-system).

In order to join the system a new node needs to know the address of any
node already connected. The new node sends an announcement containing
its identifying information (address, public key). The receiving node notes
the received information and forwards the announcement to another node
chosen randomly from its routing table. The announcement propagates until
its TTL runs out. At that point, the nodes in the chain collectively assign
the new node a random GUID in the keyspace using a protocol for shared
random number generation that prevents any participant from biasing the
result. This procedure assigns the new node responsibility for a region of
keyspace that all participants agree on.

Freenet does not impose restrictions on the amount of data that publishers
can insert. The system must therefore sometimes decide which files to keep
and which to delete. Each Freenet node orders the files in its data store
by time of last request, and when a new file arrives that cannot fit in the
space available, the node deletes the least recently requested files until there
is room. Because routing table entries are smaller, they can be kept longer
than files. Deleted files do not necessarily disappear because the node can
respond to a later request for the file using its routing table to contact the
original data holder, which might be able to supply another copy.



Chapter 3

Model of Turtle network

In this chapter we introduce a system model of the Turtle network 1. The
Turtle network consists of a large set of nodes N , and a large set of data
items D. We assume that behind each Turtle node i there is a human user
(the node’s owner) who has a subset Di of all items in D, and is interested
in obtaining more. However, a user owning a node i is willing to share his
data items only with nodes owned by people he trusts – we denote this as i’s
friends subset – Fi. We assume the friendship relation is commutative, for
any two nodes i and j, if i is in Fj , then j is in Fi. However, friendship is
not transitive (the friend of a friend is not automatically a friend).

Each data item d has an attribute set Ad associated with it. The attribute
set consists of a number of attribute = value pairs describing certain prop-
erties of the data item, and are used when evaluating user queries. These
are logical expressions consisting of a number of attribute = value pairs
(<,≤,≥, > allowed instead of =), connected using the AND, OR and NOT
logical operators. A data item matches the query if the attribute = value
pairs in its attribute set satisfy the logical condition in the query expression.

Each user establishes a cryptographically secure connection between its
Turtle node and all the nodes in its friends subset. Since there is no cen-
tral trust infrastructure, the shared secrets needed to establish these secure
connections have to be agreed-upon by out-of-band means (this can be done
using common knowledge based on common past experiences – after all own-
ers of friend Turtle nodes are assumed to be friends in the real life!). Once
established, the inter-friends secure communication links are used for ex-
changing data items and propagating user queries.

1Parts of this chapter were taken from [26]



3.1 Querying in Turtle network 10

3.1 Querying in Turtle network

Users search for new data items by sending queries to the Turtle network. The
user starts by introducing a query expression and a query depth through the
query interface of its Turtle node. The node then generates a 64 bit random
query ID. In this way, the probability that two distinct queries will have
the same query ID is extremely small. Once it has the query ID, the node
constructs a query packet containing the query expression, the query ID,
and a time-to-live, initially set to the query depth. The query packet is then
broadcast over the “friendship” links up to the desired query depth. Upon
receiving a query packet, a Turtle node first evaluates the query expression
against the attribute sets of all the data items in its data subset. If matches
are found, the node reports them back to node that has forwarded (possibly
originated) the query. Furthermore, the node decrements the time-to-live in
the query packet, and if it is still positive, the packet is further forwarded to
all the node’s friends (except the one from which the packet came).

We can see that propagating a query in the Turtle network generates
a query broadcast tree rooted in the node originating the query, tree that
follows the trust relationships among the Turtle users. The query broadcast
tree is also used for delivering query answers, which travel hop by hop up the
tree until they reach the root. In order to match queries with answers, each
node maintains a query table with queries it has forwarded recently. Each
query table entry corresponds to a query broadcast tree the node is part of;
table entries are indexed by query ID, and store the address of the node’s
parent in the tree and the time the query has been received. The table is
also used for detecting collisions. A collision occurs when a node receives a
query packet with a query ID that matches one already present in the query
table. Since it is very unlikely that two different nodes will generate the same
query ID, the most likely cause for the collision is a cycle in the friendship
graph which has routed the same packet back. That is why such packets are
ignored and not evaluated nor forwarded.

A query response packet consists of the address of the responder, the
query ID, a response time-to-live, and a response payload consisting of data
attribute set. A node receiving a query matching an element in its data set
creates an answer with the payload consisting of the attribute set of the data
item that matches the query. A node receiving a query hit from one of its
children in the query broadcast tree will immediately report it to the parent.
Before the query hit packet is forwarded, its time-to-live is decreased and the
responder’s address is changed to address of the forwarding node.

The query completes after the originating node collects reasonable num-
ber of answers from its friends or when user of the node does not want to
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wait longer. The node then sorts through all these partial answers to identify
all distinct data attribute sets; these are then presented to the user, much in
the same way as the results of a web search engine query (they can be ranked
based on frequency, or hop distance). Once the user selects the result he is
interested in, the node can start the data retrieval phase.

The retrieval phase consists of selecting a retrieval path and propagating
the query result along that path. For a given data element d (identified by
its attribute set Ad), the retrieval path is the shortest path in the query tree
between the root and a node that has d. This path is determined hop by
hop, starting with the root node which searches through all response packets
and selects the one that has Ad in the payload. The root then asks the friend
from which the selected response packet has been received to retrieve the Ad

data item. The friend follows a similar procedure to find the next hop in the
retrieval path, and so on until the retrieval request reaches the node that has
the actual data item. The data item is then sent to the requester, following
(hop by hop) the retrieval path in reverse order.

3.2 Assumptions

There are two basic assumptions we make when proposing the Turtle archi-
tecture. First, we assume that continuous, high-speed Internet connections
will become ubiquitous in the near future. Looking at current trends, which
show increasing DSL/cable modem penetration in the consumer market, not
to mention the everincreasing wireless “umbrellas” that cover large parts of
big cities, this first assumption seems very reasonable.

The second assumption is that for sufficiently large social communities
(a college campus, a country, the world), friendship relationships form fully
connected graphs. Validating this assumption would obviously involve large-
scale sociological experiments, which are beyond the scope of this thesis.
However, based on the the moderate success of the PGP infrastructure, and,
more recently, the explosive popularity of the Friendster[17] and Orkut[25]
services, we have reasons to believe that for relationships involving moderate
amount of trust, it is very likely to achieve full friendship graph connectivity.
Detailed analysis of friendship graph of Orkut users is presented in Chapter
6.
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3.3 Security of Turtle

From a security point of view, the Turtle architecture raises a number of
interesting points:

First of all, Turtle offers good query initiator and query result anonymity:
both initiator and responder are known only by their respective friends sub-
sets (trusted nodes). With small modifications in the query/result rout-
ing protocol – namely removing the time-to-live field – it is also possible
to achieve complete sender/receiver anonymity. Because all information ex-
change is done over encrypted channels, the only way for an adversary to link
a query initiator to a responder is through traffic analysis. However, there are
well known techniques for protecting against traffic analysis[15, 27], which
can be easily incorporated in our basic query/result routing protocol.

Second, the Turtle network is immune to the “Sybil” attack[10]. Even
if a powerful adversary is able to create a large number of malicious Turtle
nodes, the effect these nodes have on the correct functioning of the system is
minimal, unless the attacker is also able to infiltrate his nodes in the friends
sets of correct nodes (but this would require a lot of social engineering!).

Third, Turtle exhibits a very desirable fail-mode property – “confined
damage” – meaning that a security break in one correct Turtle node only
affects a small subset of all correct nodes in the system (in this case the node
itself plus its friends subset).

Finally, due to the way the Turtle overlay is organized, denial of service
attacks typical for a peer-to-peer network – such as malicious routing [4],
content masquerading (content that does not match its description), bogus
query hits (a node answering positive to a query even when it does not
have any matching content), and aborted transfers – are much less likely to
happen. Because all direct interactions take place between nodes controlled
by people who trust and respect each other (friends), we expect incentives
for random malicious behavior to be very much reduced.



Chapter 4

Architecture and protocol
specification

In this chapter, software architecture of Turtle node is presented. The de-
scription covers mostly communication infrastructure, because other services
are either provided by the giFT framework (e.g. GUI) or they are not inter-
esting (e.g. configuration management). The communication protocol used
in Turtle network is described here as well.

4.1 Overview

Turtle nodes form a peer-to-peer network described in the previous chapter.
Nodes are interconnected via TCP/IP – there is one TCP connection between
two neighbours (unlike Gnutella[14], where separate TCP connections are
opened for downloads, or FastTrack[12], where UDP packets are used for
delivering small messages). Communication between any two entities in the
Turtle network is done via virtual circuits that are tunnelled through TCP
connections. Thousands of virtual circuits may be tunnelled through one
TCP connection. On the other hand, one virtual circuit may consist of many
segments (Figure 4.1). Higher level protocols use virtual circuits as their
delivery mechanism.

There are five main components in Turtle (Figure 4.2):

• TCP Channel Manager is responsible for communication with neigh-
bour nodes. It establishes secure (authenticated and encrypted) TCP
connections to neighbour nodes and transfers data over these connec-
tions.

• Router is a central component of Turtle. All data going through the
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4 segment circuit

3 segment circuit

Figure 4.1: An example of virtual circuits in a small network of Turtle
nodes.

node go through Router. Other components of Turtle are registered at
Router and interact with it via Channel interface. We will call such
components channels. Channel interface provides mostly methods for
managing virtual circuits (opening, closing, sending data, controlling
flow). Circuit switching between channels is done in Router.

• Service Address Resolver (or SAR) provides general mechanism for
discovering services running at neighbour nodes.

• Query Service is responsible for receiving queries from neighbour nodes
and from local GUI, evaluating them and forwarding them to neighbour
nodes. It is also responsible for receiving query hits from neighbour
nodes and forwarding them to the source of corresponding query.

• File Service acts as a simple file server, that allows others to download
files from our node, and as a client for downloading files from other
nodes.
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Figure 4.2: Software architecture of a Turtle node.
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4.2 Communication with neighbour nodes

Turtle nodes are interconnected via TCP/IP connections. Each node main-
tains a set of neighbours – trusted nodes owned by friends. The set is con-
figured by the user and is not dynamically updated from the network as in
Gnutella[14] or in Freenet[16]. To add a new neighbour the user must enter
neighbour’s ID, IP address and secret master key. The same must be done
by the other side, otherwise the nodes cannot establish connection.

TCP Channel Manager with its subcomponents is responsible for all com-
munication related tasks. It accepts TCP connections coming from neigh-
bours and also periodically tries to contact them. If a TCP connection is
established, authentication procedure begins. During authentication proce-
dure, two session keys (one for each direction) are generated and securely
exchanged using shared master key. Data streams are then encrypted with
session keys. Immediately after authentication a Communication Channel
object is created and registered at Router. From that moment it is possible
to create virtual circuits through newly created channel.

When TCP Channel Manager receives data from a TCP connection, it
passes the data to corresponding Communication Channel. Communication
Channel unmarshalls commands from the data and passes them to Router
(using Channel interface). The inverse situation looks as follows. When
Communication Channel receives command from Router, it marshalls the
command to a buffer and passes it to TCP Channel Manager. TCP Channel
Manager adds MAC (Message Authentication Code), encrypts everything
and sends it to the neighbour node.

Because multiple virtual circuits may be tunnelled through one TCP con-
nection, data multiplexing is necessary to guarantee fair division of connec-
tion bandwidth. This task is up to Communication Channel. It cyclically
sends data of circuits and assigns higher priority to commands (connect,
flow control, close, etc.). Because network bandwidth is limited, Com-
munication Channel might not be able to send data fast enough. That is
why it has to control outgoing data flow of virtual circuits. Each circuit is
supplied with send buffer of certain size. Flow control messages are sent to
Router to ensure that this buffer is not overfilled. Section 4.3 gives more
details about circuit flow control. Figure 4.3 shows a simplified picture of
how Communication Channel works.

4.2.1 TCP connection initialization

TCP connection initialization is a four step procedure. The first three steps
mutually authenticate newly connected nodes using challenge-response pro-
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Figure 4.3: The Communication Channel component.

tocol. At the end of authentication procedure, nodes share the following
information:

• Node ID of neighbour.

• Session key for outgoing data encryption.

• Initialization vector for outgoing data encryption.

• HMAC key for outgoing data authentication.

• Session key for incoming data decryption.

• Initialization vector for incoming data decryption.

• HMAC key for incoming data authentication.

The last step activates the connection. The activation is necessary, be-
cause neighbour nodes are equal and both may decide to connect to the
other node at the same time. If this situation occurs, there are two equal
TCP connections, but only one of them may survive. During the activation
step the node with the higher node ID decides whether the newly authen-
ticated connection should survive. Because the responsibility for activating
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the connection lies always on the same node no matter who initiated the con-
nection, it never happens that both connections are activated or that both
connections are closed.

The first authentication packet is sent by the initiator of TCP connection
(node A) to the node that accepted the connection (node B). Table 4.1 shows
its structure.

Length Description
47 ID of node A
16 Random number generated by A

Table 4.1: The first authentication packet (A → B).

After receiving the first packet node B knows identity of node A. Node
B then searches its keystore for the master key shared with this node. If the
master key is not found, the connection is immediately closed. Otherwise
node B sends the second authentication packet (Table 4.2). The whole packet
is encrypted with AES[1] in CBC mode using the master key.

Length Description
16 Random number from the first packet
47 ID of node B
16 Random number generated by B
16 AES session key for data stream A → B
16 AES initialization vector for data stream A → B
16 HMAC key for data stream A → B
20 HMAC/SHA1 digest of bytes 0–126
13 Zero padding

Table 4.2: The second authentication packet (B → A).

Node A can now verify node B’s identity. It decrypts the second authen-
tication packet with master key and checks the following conditions:

• Random number at the beginning of the packet must be same as the
number in the first authentication packet (to guarantee freshness).

• ID of node B must be same as what is configured at node A.

• HMAC digest of the packet must be correct. The digest is computed
with its key set to the master key.
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During the last step node A authenticates itself to the node B. The third
authentication packet (Table 4.3) is again encrypted with AES in CBC mode
using the master key.

Length Description
16 Random number from the second packet
16 AES session key for data stream B → A
16 AES initialization vector for data stream B → A
16 HMAC key for data stream B → A
20 HMAC/SHA1 digest of bytes 0–63
12 Zero padding

Table 4.3: The third authentication packet (A → B).

Node B decrypts the third authentication packet and performs same
checks as node A in the previous step. After successful authentication both
nodes have all information needed to initialize encryption, decryption and
MAC for outgoing and incoming data streams. Before starting the real data
transfer the connection must be activated. It is done by the node with the
higher node ID, which sends one byte containing zero to the node with the
lower node ID.

4.2.2 Data transfer

Data stream sent via TCP connection is divided into blocks (Table 4.4). Each
block begins with header, which contains length of the data being transferred
in this block. The header is followed by data themselves, HMAC/SHA1 digest
of the data and padding. Everything but the header is encrypted with AES
in CBC mode. Both AES and HMAC are initialized only once immediately
after authentication, and not before each block.

Length Description
4 Length of data

1–8192 Data
20 HMAC digest of data

0–15 Zero padding

Table 4.4: Structure of data block transferred via TCP connection.
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4.3 Virtual circuits

Virtual circuits are used to transfer data between any two entities in the
Turtle network (e.g. Query Service, File Service or Service Address Resolver).
Virtual circuits are tunnelled through secure TCP connections described in
Section 4.2. Virtual circuit may consist of one or more segments. If it only
goes from a node to its neighbour, then it consists of one segment. If it goes
to a neighbour and then to neighbour of this neighbour, it has two segments.
Maximum number of segments of one circuit is theoretically not limited, but
in practise it will be less than the diameter of the network graph, which will
be low.

4.3.1 Circuit life-cycle and data flow

In this section, we describe commands (messages) that control life-cycle and
data flow of virtual circuits. The description is simplified to a circuit with
one segment. Details about circuits with more segments will be given in
Section 4.3.2.

There are six basic commands related to virtual circuits:

• Connect is a request to create a new circuit. It is always the first
command of the circuit.

• Connected is a reply to connect command. It is sent when the
circuit has been successfully created.

• Close is a request to close the circuit. It may be sent as a reply to
connect command, if the circuit cannot be created.

• Closed is a reply to close command. It confirms that the circuit has
been closed. It is always the last command sent to the circuit.

• Forward command transfers data through the circuit. It can only be
sent on established circuit – after connected command is received or
sent and before close command is received or sent.

• Flow control command prevents congestion of data receiver, if it
cannot process received data fast enough. It can only be sent on estab-
lished circuit. Flow control command gives certain amount of credits
to send more data. Each credit permits receiver of this command (i.e.
data sender) to send one more byte.
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Figure 4.4 shows an example of life-cycle of a virtual circuit. In this
example, node A acts as a client that connects to node B, sends short data
(e.g. a HTTP request), receives long data (e.g. a HTTP reply) and closes
the circuit.

The interaction begins when node A sends connect command. Node B
accepts the circuit and replies with connected command. Circuit is now
established for node B. Connected command is immediately followed by
flow control command with 500 credits, because node B has 500 bytes
long receive buffer. The circuit becomes established for node A as soon as it
receives connected command. Node A sends flow control command
with 500 credits, because it has 500 bytes long receive buffer, and then waits
for credits from node B. After receiving flow control command node A
sends forward command with 100 bytes of the request. The request cannot
be sent sooner, because node A does not know, whether node B is ready to
receive data.

The request arrives to node B and is processed. Because the reply has
700 bytes, it cannot be sent all at once. That is why node B sends only
500 bytes, waits for more credits and sends the remaining 200 bytes. Node
A closes the circuit after it receives the whole reply. First, it sends close
command. Node B replies with closed command and forgets the circuit.
Node A waits for reception of closed command and then forgets the circuit.

The reason for having separate close and closed command is that it
gives us exact moment when the circuit can be forgotten, because no more
circuit commands may arrive. Without closed command, it would be pos-
sible to ignore commands for unknown circuits, but it has two disadvantages.
First, circuit IDs could not be reused. And second, it is less immune to er-
rors in implementation. Figures 4.5 and 4.6 show situations when a command
arrives after close command has been sent.

There are two more commands not mentioned before:

• Circuit control command gives credits to open more circuits. Each
newly created circuit costs one credit. Nodes are not allowed to open
more circuits than how many circuit credits they have at the moment.
This command protects nodes from being overloaded by too many in-
coming virtual circuits.

• SAR address command informs about new address of the Service
Address Resolver. This command should be sent very early after the
TCP connection has been established. See Section 4.4 for more details.

Exact structure of all command packets is given in Appendix A.1.
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Figure 4.4: An example of life-cycle of a virtual circuit.

4.3.2 Command routing

In this section we will go more into details of how virtual circuits are created
and how data flow through the Turtle network. We have introduced con-
nect command that creates a circuit, however there was no mechanism to
specify end point of the circuit. The solution is not surprising – addressing.

Each connect command comes with the source address and the target
address. Source address is not very important at this moment, so let us
concentrate on the target address. Target address specifies the end point of
the circuit – either a service on the local node or the end point can reside
at a different node. Whenever a node receives connect command from its
neighbour, it examines the address, retrieves information about next hop and
forwards the connect command to appropriate neighbour or local service.
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Figure 4.5: An example of a virtual circuit that is prematurely closed by
its initiator.
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Figure 4.6: An example of a virtual circuit that is closed by both nodes at
the same time.
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A circuit with multiple segments is established hop-by-hop in this way.
Figure 4.7 shows a virtual circuit with 3 segments. Connect command

is forwarded from node A via nodes B and C to node D. Connected com-
mand goes the opposite direction. Flow control commands immediately
follow connected command, because all nodes on the path provide the cir-
cuit with buffer, so they control data flow on their adjacent circuit segments.
This is different from TCP/IP, where data flow is controlled by connection
end points. The forward command in the figure transfers data along estab-
lished path. It generates a flow control command at every node. Flow
control command is sent when the data leave the node making more space
in circuit buffer. In our example node D does not reply and immediately af-
ter reception of data closes the circuit. Close command is again propagated
hop-by-hop, followed by closed command.

Different example of virtual circuit is shown in figure 4.8. The circuit is
established in the same way as in the previous example, but this time node
D crashes after a while. Node C detects the crash (TCP connection goes
down) and initiates circuit shutdown procedure. Notice that node B does not
forward data received from node A, because it has already received close
command from node C.

Let us now look what happens when circuit commands arrive at a node.
First, they are processed by TCP Channel Manager as described in Section
4.2. Then they are passed to the Router component via Channel interface.
Router maintains a table of opened circuits for each channel. Each circuit has
a record in the table saying where it continues – to which channel and what
is the circuit segment ID at the target channel. Based on this information
router decides, where to forward the command. It passes the command to
selected channel, which undertakes responsibility for the command.

There are two types of channels that can be registered at Router. One
of them is above mentioned Communication Channel. The second one is
Application Channel, which has the role of end point of virtual circuits. For
Router there is no difference between Communication Channel and Applica-
tion Channel. Both have the Channel interface, so they accept and invoke
connect, connected, etc. commands. Router does not see that Commu-
nication Channel communicates all commands with a neighbour node, while
Application Channel processes everything locally. The reason to put Appli-
cation Channel component between Router and a service is that it has easy
to use, BSD sockets like, interface. It makes development of Turtle services
easy for programmers with knowledge of BSD sockets library.

Application Channel provides every circuit with receive and send buffer.
Together with Communication Channel it controls data flow of virtual cir-
cuits. Figure 4.9 shows an example of a two segment virtual circuit with
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Figure 4.7: An example of a virtual circuit with 3 segments.
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Figure 4.8: An example of a virtual circuit with 3 segments, where one
node crashes.

circuit buffers symbolized by small black squares. They are always at places
where data might get stuck for some reason – either because of slow link
(in Communication Channel) or because of slow application (in Application
Channel). Every circuit buffer is not only source of flow control com-
mands, but it has also one side effect. When a forward command reaches
a send buffer, data from the command are put into the buffer. Later, when
they are sent further, new forward command is created for them. Size
of chunks, in which data are sent, is independent on how those data were
received. That is why send buffers cause splitting and merging of forward
commands.
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Figure 4.9: An example of a virtual circuit with demonstration of flow of
data through Turtle components. Black boxes represent buffers.

4.3.3 Addressing

In the previous section we described, how circuit commands flow through
Turtle node. Although not mentioned, it is obvious, that connect com-
mand needs special handling at Router. When Router receives the connect
command, circuit is not established yet and Router does not know, where to
forward the command. It has to parse the target address to extract routing
information, which currently consists of ID of channel, where the circuit con-
tinues. In the future, routing information might also contain something else,
e.g. QoS information. When Router retrieves the routing information, it
updates its data structures and forwards the connect command to proper
channel. Forwarded command contains updated target address, so that re-
ceiver can again parse it in order to get its own routing information. In
the following sections we will describe two different addressing schemes, each
suitable for different purpose. The Router should be able to work with both
of them, although the second one is not mandatory. Both addressing schemes
try to hide identity of end point of the circuit, so we refer to addresses created
by them as to anonymous addresses.
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Figure 4.10: Construction of stateless address.

Stateless addressing

Stateless addressing is called stateless, because it does not require nodes
along the path from source to target to store any state. The whole routing
information is stored in the address – each hop extends the address by a
short record, saying, where the circuit continues. This technique is known
from source routing, however in Turtle it is used with one major modification.
Each record is encrypted by the node that later extracts it from the address,
when circuit is being established. This has the advantage that nobody else
then the creator of the record understands it.

Figure 4.10 gives an example of a very simple network consisting of four
nodes. Each node keeps an encryption key used for encrypting anonymous
addresses. Then the address of node D at node A is E(keyA, link3 ):E(keyB,
link3 ):E(keyC, link1 ). Because nodes understand only their own part of
the address, they know only their immediate neighbours on the path. This
addressing scheme also reveals path length to nodes. Although it does not
look like very useful information, it might become dangerous when path
length is low (1 or 2 hops). That is why stateless addressing is now used only
when hop count does not need to be kept secret.

Anonymous addresses are usually constructed on the way from the target
node back to the source node (Section 4.5 gives more details). For stateless
anonymous address it means that each node extends the address by prepend-
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Length Description
4 Address type (2)

for each 4 Random data
record 4 Type of record

(encrypted) (0 normal, 1 if enc. address follows)
1 Length of record data

0–255 Record data
0–15 Zero padding

encapsulated 4 Random data
address 4 Type of record (2)

(encrypted, 4 Length of encapsulated address
optional) 4– Encapsulated address

0–15 Zero padding

Table 4.5: Recommended structure of stateless anonymous address.

ing node’s own routing information in encrypted form. Because the routing
information is later interpreted by the same node, there are no limitations on
the structure of prepended data. That is why the only requirement is that
the whole address begins with proper address type value, everything else are
just recommendations.

Table 4.5 shows recommended structure of the address. As an encryption
method, AES is recommended. Encryption key does not need to be persis-
tent, so the address becomes invalid after any node on the path is restarted.
The most important part of the address is record data field, where routing
information is stored. Currently it contains only channel ID. The address
may optionally end with special record called encapsulated address, which
allows to combine different addressing methods in one address, e.g. first two
hops of five hop address use stateless addressing and remaining three use
stateful addressing.

Stateful addressing

Stateful addressing requires every node along the path from source to target
to store a piece of routing information. Routing information is stored in a big
table and stateful anonymous address contains only index (somehow obfus-
cated) to this table. This approach has an advantage that all addresses have
the same length no matter how far it is to the target node. The disadvantage
is that routing information must stay in the network for some time, which
consumes memory of nodes. Because there is no mechanism to tell nodes
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Length Description
4 Address type (3)
8 Record ID

Table 4.6: Structure of stateful anonymous address.

that certain address is not useful any more, nodes must forget old addresses
to make place for new ones. There is no strict rule about how long the Turtle
nodes must keep addresses in their memory. We recommend to keep them at
least 5–15 minutes, because stateful addresses are currently returned by Qu-
ery Service, so they should not be forgotten before user decides to download
a file.

Here is the recapitulation of advantages and disadvantages of stateful
anonymous address against stateless anonymous address:

+ It does not reveal hop count.

+ It is shorter (less communication overhead).

− It consumes memory of all nodes on the path.

− It spontaneously becomes invalid after some time.

Structure of stateful anonymous address is given in Table 4.6. Record ID
might be anything that identifies a record in the table of addresses. Each
record of the table contains channel ID and record ID for the next node on
the path. It should not be easy to guess a valid record ID, because malicious
nodes could try to connect to addresses that were not created for them.
Generating record IDs randomly is sufficient solution. The problem does not
even appear if there is separate table for each neighbour node.

4.4 Service Address Resolver

Service Address Resolver (SAR for short) provides mechanism for discovering
services running at neighbour nodes. It is used by Query Service, which needs
to communicate with neighbour nodes in order to exchange queries and query
hits. However, SAR is general mechanism and might be used by any other
service as well.

There is one SAR running on each node. It is registered at the Router as a
regular service with special flag set. The flag tells the Router to send address
of this service to all neighbours. The address is sent via SAR address
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command immediately after the TCP connection to a neighbour has been
established. Because it is the only address sent initially to neighbours, it
acts as an entry point to the node. Any service at neighbour node may open
a virtual circuit to our SAR and request the following information:

• List of services. Gives list of names of services that registered them-
selves at SAR, e.g. Query Service (File Service is not registered at SAR
– its address is provided by Query Service instead).

• Address of a service. Gives anonymous address of requested service.
This request is used by Query Service – it contacts neighbour’s SAR
and asks for anonymous address of Query Service running at that node.

Exact structure of SAR packets is given in Appendix A.2.

4.5 Query Service

Query Service implements querying scheme described in Section 3.1. When
a query is entered by a user, it is first parsed to check correct syntax. A
parse tree is constructed and used to build a query packet. Although using
parse tree instead of original query string might slightly increase size of query
packet, it reduces CPU load of nodes in the Turtle network, because parsing
is done only once and not on every node of query broadcast tree. Query
packet is then inserted into the Turtle network and is propagated until the
desired maximum depth.

Queries are sent using the Query Sender component. Query Sender main-
tains set of virtual circuits permanently connected to all neighbour nodes.
When a new neighbour appears, Query Sender contacts neighbour’s SAR
and asks for address of Query Receiver running at that node. Then a virtual
circuit is opened to Query Receiver. The circuit is used for sending queries
and receiving query hits. For the other direction of communication – re-
ceiving queries and sending query hits – there is second circuit initiated by
neighbour’s Query Sender, which is connected to our Query Receiver. Hav-
ing two circuits with simple protocol instead of one with complex protocol
makes implementation easier.

When Query Receiver receives a query from a neighbour node, it passes
the query to Query Manager. Query Manager is responsible for detecting
collisions caused by cycles in friendship graph. For this purpose, it maintains
table of recently seen queries. If the received query is found in the table, it
means collision, and the query is ignored. Otherwise the query is passed
to Query Sender, which forwards it to all neighbours except the one that
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Figure 4.11: An example of how a query is propagated through a small
Turtle network

forwarded it to us. The query is also passed to Local Query Evaluator, which
evaluates the query against locally shared files.

If Local Query Evaluator finds a hit, it builds a query hit packet that
contains all attributes of the hit (file name, file length, etc.), anonymous
address of local File Sender and query ID of corresponding query. Query
hit packet is passed to Query Manager, which finds query ID in the table of
recently seen queries. The table also contains query source for each query.
With this information, Query Manager passes the query hit packet to Query
Receiver, which sends it to appropriate neighbour via one of the permanently
connected virtual circuits

When Query Sender receives a query hit packet from a neighbour node,
it first extends the File Sender anonymous address in the packet by local
routing information. How exactly is the extension performed depends on
the type of anonymous address used. Currently stateful addresses (Section
4.3.3) are preferred for query hits, but stateless addresses could be used as
well. Modified query hit packet is then passed to Query Manager, where it
is handled in similar way as query hits received from Local Query Evaluator
– it is forwarded either to Query Receiver or to local application.

Figures 4.11 and 4.12 give an example of how query packets and query
hit packets are propagated through a small Turtle network. Exact structure
of query packets is given in Appendix A.3.

4.5.1 Query syntax

The basic building block of a query is formula with attribute name, relational
operator and a value (if the operator is not unary):
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Figure 4.12: An example of how query hits are propagated through a small
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• attribute > value True if attribute is greater than value.

• attribute >= value True if attribute is greater than or equal to value.

• attribute == value True if attribute is equal to value.

• attribute <= value True if attribute is less than or equal to value.

• attribute < value True if attribute is less than value.

• attribute = value True if value is a substring of attribute.

• EXISTS attribute True if attribute is defined.

Neither attribute name nor value may contain spaces. However if value is
enclosed in quotation marks or single quotes, spaces are allowed. Backslash
is used as an escaping character to insert quotation marks or single quotes
to value. String comparisons are case insensitive.

Basic formulae are connected with logical operators.

• formula1 AND formula2 True if both formulae are true. Ampersand (&)
is a shortcut for AND operator.

• formula1 OR formula2 True if at least one of formulae is true. Pipe (|)
is a shortcut for OR operator.

• NOT formula True if formula is false. Exclamation mark (!) is a shortcut
for NOT operator.
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More complex logical expressions can be built using parentheses. A few
examples of queries follow.

• name = turtle
True for file with name containing turtle (or Turtle, TURTLE, etc.).

• name == turtledoc.pdf AND length > 100000
True for file turtledoc.pdf longer than 100kB.

• name = turtle AND (type == pdf OR NOT EXISTS type)
True for file with name containing turtle, which has type pdf or has
undefined type.

• name = turtle & ! name == ’turtle w/ spaces and \’single quotes\’.avi’
True for file with name containing turtle, with one weird exception.

4.6 File Service

File Service is a service that transfers files over the network. It has two
subcomponents – File Sender and File Receiver. When a user of the Turtle
decides to download file from the network, he first uses Query Service to
locate the file. Besides other attributes, Query Service returns name of file
and anonymous address of File Sender of node where the file resides. The
user then asks local File Receiver to download the file for him.

File Receiver manages all file downloads. When asked to download a file,
it opens a virtual circuit to remote File Sender and sends request packet.
The packet contains file name, starting position and maximum length of
data. Remote File Sender finds the file on its filesystem and responds with
the desired data. During the transfer all data received by File Receiver
are stored to local filesystem to location specified by the user. After the
transfer finishes, user is notified that his file is ready. Structure of packets
used in communication between File Receiver and File Sender is described
in Appendix A.4.

Protocol described here supports continuing of interrupted downloads,
which is an important feature, because the chance that a given circuit in
the Turtle network will be interrupted is much higher than in normal peer-
to-peer networks. It happens whenever any node on the path is shut down.
Circuits used to download long files are especially vulnerable to this.

When a download is interrupted, it is usually not possible to restart it by
simply connecting to the same address as before, even when the target node
is up. The reason is that the address routes the circuit through node that
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is probably down. That is why a new query must be issued to find different
route to the target node. After the node is found (or different node with the
same file), the download can be restarted.

4.7 giFT Integration Layer

The giFT Integration Layer was added to Turtle after we found the giFT
project[18]. The giFT framework, often referred to as the giFT bridge, is
implemented as a separate daemon process to which protocol plug-ins can
be added. The bridge provides a generic interface that can be used by client
front ends to access any of the networks currently installed.

The giFT Integration Layer adapts Turtle to the giFT interface for pro-
tocol plug-ins, i.e. Turtle has become a protocol plug-in of giFT. The inte-
gration with giFT was quite straightforward (besides few unavoidable hacks)
and as a results, Turtle gained many new features. The following list gives
overview of the most important ones.

GUI Any giFT front end can now be used as a Turtle front end. There are
several professionally looking graphical front ends, such as Apollon[3]
or giFToxic[19]. The solution with generic front end suffers from one
major drawback – the front end does not understand the underlying
protocol specifics, so the configuration must be done by hand and not
via user-friendly dialog boxes.

Metadata Most of the files that are published to the network can be pro-
vided with metadata based on the file content, e.g. author of a doc-
ument or bitrate of a song. The ability to retrieve such information
from a file requires knowledge of the file structure. The giFT frame-
work scans all locally shared files, and reads metadata from files with
known structure. It passes the metadata to protocol plugins. In our
case, the metadata are passed to Local Query Evaluator, which incor-
porates them into query hit packets.

File fingerprints and hash-links Besides reading metadata from locally
shared files, giFT also calculates their hashes (fingerprints) and passes
them to protocol plugins. Turtle sends file hashes via query hit packets
to query initiator, which can later verify that downloaded file is not
corrupted. File hash can be also used to find a file by its content, if
someone publishes a hash of the file (e.g. on the web).

Multisource downloading Downloading file simultaneously from multiple
sources is another feature of giFT. It is completely transparent for
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protocol plugins. giFT locates multiple sources of the same file via file
hash (same file hash means same file even if its name is different) and
initiates multiple downloads, each starting at different position. For
Turtle, these downloads seem to be totally independent.

Different query syntax Queries produced by giFT have different syntax
than Turtle queries. Because Turtle queries are more general, giFT
queries can be easily translated into Turtle syntax without loss of in-
formation.



Chapter 5

Performance measurements

In order to verify that our implementation of Turtle is reasonably good and
does not suffer from major performance problems, we ran set of performance
tests. All tests were run on DAS2 machine[8], a cluster of 72 PCs located at
Vrije University. DAS2 nodes have the following configuration:

Processors 2 x Pentium III, 1 GHZ
Memory 1 GB
HDD 20 GB, IDE
Network interfaces Fast Ethernet (100 Mb/s)

Myrinet-2000
Operating system Red Hat Linux 7.3

with kernel 2.4.20-24.7smp

Table 5.1: DAS2 node configuration overview.

TCP stack of DAS2 nodes was configured to use Fast Ethernet network
card, because drivers for Myrinet cards are optimized for userland libraries
like MPI and they have high latency when used with TCP/IP. Fast Ethernet
network of DAS2 is fully switched at 100 Mb/s with full-duplex (our tests
showed that each node is able to send and receive almost 11 MB/s at the
same time).

5.1 Protocol overhead

The aim of the protocol overhead test is to measure, what part of data
transferred by Turtle is actual file data and how much control data is added
by Turtle. The topology of Turtle network used in this test is depicted
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Figure 5.1: Protocol overhead experimental setup – star topology with node
0 in the middle.

in Figure 5.1. Node 0 in the middle relayed all traffic and performed the
measurements. Other nodes just transferred huge files as fast as node 0
allowed them to do. Node 0 ran on a dedicated PC to minimize influence of
CPU load, while leaf nodes shared PCs (there were more Turtle nodes than
PCs, so we could not avoid it).

The measurement was done in the following way. First, all leaf nodes
established TCP connection to node 0, which was their only neighbour. Leaf
nodes then issued queries to find files located at other leaf nodes. After re-
ceiving all replies, each leaf node opened certain number of file download
circuits to randomly chosen nodes and started downloading. Node 0 relayed
the traffic and periodically (every second) recorded amount of file data re-
layed. Because bandwidth of node 0 was limited by configuration, we could
easily compute protocol overhead as (BW −F )/F , where BW is bandwidth
and F is file data volume.

Each test run took 10 minutes, however values from first 5 minutes and
last 2 minutes were ignored. Values from 3 minutes in between were aver-
aged and used in formula in previous paragraph. By using only values from
the middle of the interval, the measurement is not influenced by “warmup
period”, when nodes establish TCP connections and virtual circuits, and
communication buffers are being filled.

There are several data structures that are communicated in Turtle pro-
tocol and that cause the overhead:
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Bandwidth [KB/s] N C/N Overhead
16 2 20 5.0%
16 5 20 4.5%
16 10 20 2.9%
16 20 20 3.3%

128 2 20 2.5%
128 5 20 3.3%
128 10 20 4.0%
128 20 20 4.7%
128 50 20 3.2%
128 100 20 2.9%

1024 2 20 2.9%
1024 5 20 3.3%
1024 10 20 3.2%
1024 20 20 2.6%
1024 50 20 3.6%
1024 100 20 4.4%
1024 200 20 4.6%

Table 5.2: Protocol overhead for different number of neighbours
(N=neighbours, C/N=circuits per neighbour).

• forward command headers (Table A.4)

• flow control commands (Table A.5)

• security-related data (Table 4.4)

• TCP/IP headers – overhead caused by TCP/IP headers is not included
in our tests

Protocol overhead test was run with many different settings to see the
influence of varying parameters. The Turtle turned out to be efficient as the
overhead always fits between 2.5% and 5%.
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Bandwidth [KB/s] N C/N Overhead
16 20 1 3.4%
16 20 5 3.1%
16 20 20 3.3%

128 20 1 3.0%
128 20 5 3.1%
128 20 20 4.7%
128 20 100 4.2%

1024 20 1 2.8%
1024 20 5 3.2%
1024 20 20 2.6%
1024 20 100 4.7%
1024 20 500 3.7%

Table 5.3: Protocol overhead for different number of circuits per neighbour
(N=neighbours, C/N=circuits per neighbour).

Bandwidth [KB/s] N C/N Size Overhead
16 5 20 2KB 4.5%
16 5 20 8KB 3.5%
16 5 20 32KB 4.2%
16 5 20 128KB 4.0%

128 25 20 2KB 3.8%
128 25 20 8KB 3.9%
128 25 20 32KB 4.7%
128 25 20 128KB 4.8%

1024 100 20 2KB 3.6%
1024 100 20 8KB 4.4%
1024 100 20 32KB 4.5%
1024 100 20 128KB 4.5%

Table 5.4: Protocol overhead for different sizes of communication buffer
(N=neighbours, C/N=circuits per neighbour).
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Figure 5.2: Protocol overhead for different number of neighbours.
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Figure 5.4: Protocol overhead for different sizes of communication buffer.

5.2 CPU load

In the second test CPU load of a Turtle node that relays a lot of traffic
was measured. The experimental setup was exactly the same as in the first
experiment – star topology with node 0 in the middle. Node 0 relayed all
traffic going through the Turtle network. It did not share PC with any
other node, so the process of node 0 was the only CPU consuming process
running at that PC. Node 0 was also the only node with bandwidth limited
by configuration. Other nodes’ communication speed was limited only by
node 0 – they sent and received as much data as node 0 allowed them to do.

CPU load measurement method was the same as in UNIX program top
– jiffies spent in threads of Turtle were periodically recorded and divided
by length of period (in jiffies of course). Measurement was done every two
seconds for 15 minutes. Results were averaged from values recorded in the
middle 6 minutes of the interval. The reasons for not using values at the
beginning and at the end of the interval are same as in Protocol overhead
tests (Section 5.1).

Because Turtle is a multi-threaded application, we had to measure all its
threads. However, the only threads that participate in relaying traffic are
the router thread and the TCP thread. Other threads cause negligible CPU
load at relay node and were therefore omitted from this test. Total CPU
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load was calculated as a sum of loads of router thread and CPU thread.
Notice that total CPU load exceeds 100% in two tests – the reason is that
each DAS2 PC has two processors, while CPU load is calculated per one
processor (theoretically we could get 200% CPU load if both threads reached
100%).

CPU load test was run with many different settings to see the influence
of varying parameters on router thread and TCP thread.

Bandwidth CPU load of both threads scales almost linearly with band-
width. Total load of 100% is reached around 4 MB/s with security and
10 MB/s without security (there are separate limits on incoming and
outgoing data, so 10 MB/s means 10 MB/s in and 10 MB/s out, not 5
MB/s in and 5 MB/s out).

Neighbours and Circuits per neighbour These parameters have negli-
gible effect on CPU load, until total number of circuits gets extremely
high. With 10000 circuits, the increase of CPU load is already signifi-
cant (20% with 4 MB/s, see Table 5.7).

Security To analyze security overhead, we ran CPU load test with most
CPU consuming security-related operations turned off. These oper-
ations are performed in TCP thread: encryption and decryption of
data and computing and verifying of MACs (Message Authentication
Codes). The security overhead turned out to be around 2/3 (2/3 of
CPU cycles spent in security operations), except for runs with high
number of circuits, when the security overhead decreased to almost
1/2.
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with security without security
N C/N Router TCP Total Router TCP Total
5 5 0.9% 19.6% 20.5% 1.1% 5.7% 6.8%
5 10 1.0% 19.8% 20.8% 1.1% 5.3% 6.4%
5 50 0.8% 18.6% 19.4% 1.1% 4.4% 5.5%
5 100 1.2% 19.4% 20.6% 1.0% 4.1% 5.1%

10 5 0.9% 19.9% 20.8% 1.1% 5.1% 6.2%
10 10 0.9% 19.5% 20.4% 0.8% 4.4% 5.2%
10 50 1.3% 19.6% 20.9% 1.2% 4.6% 5.8%
10 100 1.9% 20.2% 22.1% 2.4% 5.6% 8.0%
50 5 1.1% 20.7% 21.8% 1.4% 5.0% 6.4%
50 10 1.2% 20.7% 21.9% 1.5% 4.7% 6.2%
50 50 3.3% 22.7% 26.0% 4.2% 7.8% 12.0%
50 100 2.4% 22.7% 25.1% 2.8% 7.1% 9.9%

100 5 1.2% 21.7% 22.9% 1.2% 5.9% 7.1%
100 10 2.2% 21.9% 24.1% 2.4% 6.2% 8.6%
100 50 2.2% 23.0% 25.2% 2.9% 7.6% 10.5%
100 100 2.3% 22.6% 24.9% 1.8% 6.0% 7.8%

Table 5.5: CPU load measurements of router thread, TCP thread and total
load, 1 MB/s bandwidth (N=neighbours, C/N=circuits per neighbour).

with security without security
N C/N Router TCP Total Router TCP Total
5 5 2.0% 42.7% 44.7% 2.4% 10.8% 13.2%
5 10 1.7% 40.6% 42.3% 2.4% 10.5% 12.9%
5 50 1.4% 38.2% 39.6% 1.9% 9.6% 11.5%
5 100 1.4% 38.4% 39.8% 1.8% 8.4% 10.2%

10 5 1.8% 39.2% 41.0% 2.6% 11.4% 14.0%
10 10 1.8% 40.1% 41.9% 2.1% 9.5% 11.6%
10 50 1.8% 38.3% 40.1% 1.9% 8.6% 10.5%
10 100 2.6% 39.2% 41.8% 2.8% 9.7% 12.5%
50 5 1.6% 39.8% 41.4% 2.6% 10.6% 13.2%
50 10 1.6% 39.7% 41.3% 2.3% 8.9% 11.2%
50 50 4.9% 43.3% 48.2% 5.8% 12.7% 18.5%
50 100 6.0% 45.0% 51.0% 7.9% 15.5% 23.4%

100 5 2.2% 41.6% 43.8% 2.7% 10.8% 13.5%
100 10 2.6% 41.5% 44.1% 3.3% 10.2% 13.5%
100 50 6.5% 45.9% 52.4% 8.0% 15.8% 23.8%
100 100 4.9% 45.5% 50.4% 6.1% 13.9% 20.0%

Table 5.6: CPU load measurements of router thread, TCP thread and total
load, 2 MB/s bandwidth (N=neighbours, C/N=circuits per neighbour).
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with security without security
N C/N Router TCP Total Router TCP Total
5 5 3.5% 79.0% 82.5% 4.5% 22.2% 26.7%
5 10 3.5% 78.6% 82.1% 4.6% 22.3% 26.9%
5 50 3.0% 78.0% 81.0% 4.0% 19.2% 23.2%
5 100 3.1% 76.2% 79.3% 4.0% 18.9% 22.9%

10 5 3.5% 79.0% 82.5% 4.4% 22.7% 27.1%
10 10 3.6% 79.6% 83.2% 4.5% 21.0% 25.5%
10 50 3.0% 75.8% 78.8% 4.0% 18.4% 22.4%
10 100 3.1% 75.9% 79.0% 3.5% 19.4% 22.9%
50 5 3.6% 80.3% 83.9% 4.6% 26.0% 30.6%
50 10 3.5% 79.0% 82.5% 4.4% 23.6% 28.0%
50 50 6.0% 80.7% 86.7% 6.5% 23.3% 29.8%
50 100 10.2% 85.2% 95.4% 10.0% 26.7% 36.7%

100 5 3.6% 81.0% 84.6% 4.3% 23.8% 28.1%
100 10 3.9% 80.3% 84.2% 4.9% 21.6% 26.5%
100 50 10.5% 87.8% 98.3% 13.0% 26.7% 39.7%
100 100 13.3% 91.9% 105,2% 15.6% 31.9% 47.5%

Table 5.7: CPU load measurements of router thread, TCP thread and total
load, 4 MB/s bandwidth (N=neighbours, C/N=circuits per neighbour).

with security without security
N C/N Router TCP Total Router TCP Total
5 5 N/A N/A N/A 5.9% 50.8% 56.7%
5 10 N/A N/A N/A 10.8% 55.9% 66.7%
5 50 N/A N/A N/A 10.3% 52.7% 63.0%
5 100 N/A N/A N/A 10.3% 48.8% 59.1%

10 5 N/A N/A N/A 11.7% 56.6% 68.3%
10 10 N/A N/A N/A 10.4% 54.1% 64.5%
10 50 N/A N/A N/A 10.5% 51.0% 61.5%
10 100 N/A N/A N/A 10.1% 52.3% 62.4%
50 5 N/A N/A N/A 12.7% 72.0% 84.7%
50 10 N/A N/A N/A 11.7% 66.3% 78.0%
50 50 N/A N/A N/A 11.0% 61.9% 72.9%
50 100 N/A N/A N/A 18.2% 66.1% 84.3%

100 5 N/A N/A N/A 12.3% 71.4% 83.7%
100 10 N/A N/A N/A 12.4% 69.2% 81.6%
100 50 N/A N/A N/A 16.8% 73.1% 89.9%
100 100 N/A N/A N/A 28.8% 81.1% 109,9%

Table 5.8: CPU load measurements of router thread, TCP thread and total
load, 10 MB/s bandwidth (N=neighbours, C/N=circuits per neighbour).
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Figure 5.5: Router thread CPU load, with security, 1 MB/s bandwidth
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Figure 5.6: TCP thread CPU load, with security, 1 MB/s bandwidth
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Figure 5.8: Router thread CPU load, without security, 1 MB/s bandwidth
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Figure 5.9: TCP thread CPU load, without security, 1 MB/s bandwidth
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Figure 5.10: Total CPU load, without security, 1 MB/s bandwidth
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Figure 5.11: Router thread CPU load, with security, 2 MB/s bandwidth

5 10 50 100
5

10

50

100

neighbours

circuits per 
neighbour

44.0%-46.0%
42.0%-44.0%
40.0%-42.0%
38.0%-40.0%

Figure 5.12: TCP thread CPU load, with security, 2 MB/s bandwidth
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Figure 5.14: Router thread CPU load, without security, 2 MB/s bandwidth
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Figure 5.15: TCP thread CPU load, without security, 2 MB/s bandwidth
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Figure 5.17: Router thread CPU load, with security, 4 MB/s bandwidth
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Figure 5.18: TCP thread CPU load, with security, 4 MB/s bandwidth
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Figure 5.19: Total CPU load, with security, 4 MB/s bandwidth



5.2 CPU load 51

5 10 50 100
5

10

50

100

neighbours

circuits per 
neighbour

15.0%-20.0%
10.0%-15.0%
5.0%-10.0%
0.0%-5.0%

Figure 5.20: Router thread CPU load, without security, 4 MB/s bandwidth
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Figure 5.21: TCP thread CPU load, without security, 4 MB/s bandwidth
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Figure 5.22: Total CPU load, without security, 4 MB/s bandwidth
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Figure 5.23: Router thread CPU load, without security, 10 MB/s band-
width
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Figure 5.24: TCP thread CPU load, without security, 10 MB/s bandwidth
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5.3 Latency

In the last test we measured latency of data transferred through a single
segment virtual circuit. This time the Turtle network consisted of two nodes
– node 0 was a data source that sent file to node 1. Both nodes ran on
the same PC, so the measurement was not influenced by network latency
and there was no need to synchronize system clock of two different PCs.
Bandwidth of both nodes was limited by configuration.

The test startup procedure included several steps. First, nodes 0 and 1
established TCP connection to each other. Then node 0 issued a query to
find the file at node 1. After receiving reply, node 0 opened certain number of
file download circuits and started downloading the file on all of them. One of
the circuits was selected as a “measurement circuit” – latency was calculated
as a difference between time, when file data left File Sender at node 1, and
time of arrival of file data to File Receiver at node 0. Measurements were
repeated until there were enough values collected (50 in most cases, 10 in
cases with very high latency).

Table 5.9 shows latency test results obtained with different bandwidth
settings and different number of circuits. The results look surprisingly bad,
but in fact they perfectly meet our expectations. To explain why, let us look
how file data travel from node 1 to node 0. The data start their journey in
send buffer of File Sender at node 1 (recall Figure 4.9). To minimize effect of
this buffer, we disabled it, so the data go directly to buffer of Communication
Channel. Here, data of all circuits are multiplexed to TCP connection to
node 0 (recall Figure 4.3). After arriving to node 0, file data are propagated
through Communication Channel and Router directly to File Receiver.

Because bandwidth of the connection between nodes 0 and 1 is limited,
Communication Channel at node 1 cannot send data as quickly as it receives
them from File Sender, and buffers of all circuits get full very soon after
transfers begin. They stay full during the whole test, because whenever
Communication Channel sends some data to node 0, it also sends flow
control command to File Sender, which immediately fills buffer with more
data. Data latency measurement therefore begins when data are sent to
nearly full buffer of Communication Channel and ends soon after they leave
the buffer (transfer time between node 0 and 1 is negligible).

Because data spent most of the time just waiting in the buffer of Commu-
nication Channel, we can calculate expected latency as BUF/(BW ∗E/C),
where BUF is size of the buffer (32KB in our case), BW is total bandwidth,
E is effectiveness of the protocol (0.96 in our case, see Section 5.1) and C
is number of circuits. Latency tests show that this calculation is correct, al-
though measured values are usually a bit lower than expected values. There
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are two reasons for this phenomenon. First, buffers in Communication Chan-
nel are not always full, because flow control commands are sent only if
space in the buffer is bigger than certain threshold (to prevent sending too
many commands). And second, due to bandwidth limiting mechanism, data
are usually communicated only at the beginning of each second, until band-
width limit for that second is reached. Then the communication is blocked,
until next second starts. This behaviour influences especially measurements
with low expected latencies (< 1 second).

Despite very high latencies, Turtle can still serve its purpose very well. For
long continuous transfers, latency is usually not as important as throughput.
For short transfers, latency will not be so high, because buffers in Communi-
cation Channel will be empty. Moreover, implementation of data multiplexor
in Communication Channel prioritizes circuits that do not send much data,
which makes interactive communication even faster.
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Bandwidth Circuits Latency Expected
[KB/s] [s] latency [s]

2 1 18.50 16.67
2 2 33.70 33.33
2 5 84.50 83.33
2 10 167.70 166.67

16 1 2.00 2.08
16 2 4.20 4.17
16 5 10.20 10.42
16 10 20.20 20.83
16 20 40.49 41.67
16 50 102.00 104.17
16 100 204.00 208.33

128 1 0.00 0.26
128 2 0.01 0.52
128 5 1.00 1.30
128 10 2.00 2.60
128 20 4.60 5.21
128 50 11.40 13.02
128 100 24.59 26.04
128 200 50.19 52.08

1024 1 0.00 0.03
1024 2 0.00 0.07
1024 5 0.01 0.16
1024 10 0.03 0.33
1024 20 0.15 0.65
1024 50 1.14 1.63
1024 100 2.99 3.26
1024 200 5.80 6.51
1024 500 15.23 16.28

Table 5.9: Data latency measurements.
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Chapter 6

Orkut data analysis

During the design of Turtle we made several assumptions about how the
Turtle network will look, when many people start using it. Verifying our
assumptions is difficult, but it is important if we want to be sure that the
network will not collapse. The main questions we asked ourselves were:

• Do Turtle nodes form a fully connected graph?

• What if x% of nodes are down? Does it cause the network to split into
separate components?

• How many neighbours do Turtle nodes usually have?

• What is the average/maximum length of path in the network? How is
it influenced by shutting down x% of nodes?

Giving precise answers to these questions is not possible at present. First,
there is no Turtle network running, which we could analyse. And second, the
network architecture prevents anyone from doing deeper analysis. Due to
these facts we decided to take a different approach and we analysed data
from Orkut[25] web site.

Orkut is an online community web site ran by Google. After registration
at Orkut, user is asked to enter tons of personal information. Orkut then
provides various services to its users, which we will not describe here. For us,
it is important that each user maintains a list of friends selected from other
Orkut users. The list, together with personal information, is visible to all
Orkut users, which makes crawling the whole web technically possible (only
by people with account at Orkut, of course). For our analysis, we did not
need any personal data about users. We needed just the graph, where each
node denotes a user and edge denotes a relationship. Thanks to Rolan Yang,
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who collected Orkut data for his GeOrkut project[33], we obtained the data
for our analysis.

The web site was crawled at the beginning of year 2004, when Orkut
had much less users than it has now. The graph contains 106481 nodes and
475800 undirected edges. The graph is fully connected, because users are
allowed to register only after invitation from already registered user. New
user therefore gets a connection to the main graph component during the
registration process.

We believe that the graph obtained from Orkut is similar to graph that
would be created by Turtle users. In both systems, virtual relationships are
based on real life friendships. This is true for most Orkut users, although
there are some who have suspiciously high number of friends. In Turtle,
where relationships require higher level of trust than in Orkut, such users
would not exist – it would be too risky. Despite this difference, Orkut graph
is probably the best approximation of what we would get with Turtle.

6.1 Connectivity and components

In this section, we try to answer questions related to node connectivity (i.e.
how many neighbours nodes have) and graph components. Distribution of
node connectivity is shown in Figure 6.1. There are two interesting points
about this figure:

• 30.3% of nodes have only one neighbour. Each such node is totally
dependent on its neighbour and if the neighbour is shut down, the
node gets disconnected from the network. We see two possible reasons
for not having more than one neighbour: First, the user does not know
anyone else at Orkut and none of his friends is able to or interested
in joining it. And second, user just wanted to try Orkut and is not
interested in using it and finding or inviting new friends. Although
there is no evidence for it, the second reason seems more likely. If it
is true and if the behaviour of Turtle users is similar, nodes with one
neighbour are not as big problem as it looks, because they will not be
very active.

• 8.8% of nodes have 25 neighbours or more. Having so many friends
could be considered risky in Turtle, where each relationship requires
certain level of trust.

Figure 6.2 shows changing distribution of node connectivity when ran-
domly selected nodes are shut down. The fraction of nodes, which are shut
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Figure 6.3: Size of the largest component (100% = all nodes)

down, increases smoothly from 0% (full graph) to 100% (all nodes down)1.
The figure shows that number of high connectivity nodes goes down first.
Number of low connectivity nodes decreases slowly at the beginning, be-
cause high connectivity nodes are becoming lower connectivity nodes. On
the other hand, zero connectivity increase from left to right. Slowly at the
beginning (when 50% nodes are down, 20% of the remaining nodes have no
neighbour) and quickly in the right part of the figure.

Another property of Orkut graph is the size of the largest component. It
is shown in Figure 6.3, again for changing fraction of random nodes down and
the most connected nodes down. Size of the largest component is important
property of the network. It tells us, whether the network splits into multiple
separate networks if certain fraction of nodes is shut down. When random
nodes are shut down, the network seems to be quite resistant. With 50%
randomly selected nodes down, the largest component contains 73.2% of the
remaining nodes. This is very optimistic number, if we consider that more
than a half of the disconnected nodes have only one neighbour in the full
graph (i.e. they know they can be easily disconnected).

1For each percentage the test was repeated 10 times and the results were averaged.
This method was applied to the all tests in this chapter, where random numbers/random
selection was applied.
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Figure 6.4: Distribution of path lengths in the full graph

The situation is completely different, when nodes are shut down from the
most connected to the least connected. The size of the largest component
drops below 1% when 25% of the most connected nodes are down. The
network could be attacked in this way, but it would require an extremely
powerful adversary. On the other hand, notice that removing only 8.8% of
the most connected nodes (those risky ones with too many neighbours) does
not harm the network too much.

There are few more interesting statistics, we have acquired from the Orkut
graph. The largest biconnected component contains 64.5% of nodes. No node
in this component can be disconnected from it by removing any other single
node. From the remaining 35.5% nodes, most have one neighbour (30.3%
of all nodes), which is the dangerous one. 5.2% of nodes have at least two
neighbours, but still they can be disconnected from the main component by
removing single node. The largest subgraph, which is connected to the main
component via one node, contains 23 nodes.

6.2 Data availability

The second group of measurements focuses on data availability and data
distance in the Orkut graph. Figure 6.4 shows distribution of path lengths in
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the full graph. The distribution is very similar to normal distribution with
mean 5.72 and standard deviation 1.21. The longest path has 16 hops.

The average path length says, what is the expected distance from random
node to another random node. In the real network, however, downloads are
established in different way. If there are more hits for a query, user usually
chooses the hit that comes first, i.e. hit that has the lowest distance from the
user’s node. Figure 6.5 takes this behaviour into account. It shows average
distance from data, if there are more sources of the desired data. The number
of data sources varies from one node to all nodes. The distance decreases
from average path length to zero.

The following measurements were performed on a graph with 10, 100
and 1000 data sources. All three variants give similar results, so we show
only results of 100 data source variant. The results were collected on graphs
with randomly selected nodes shut down and the most connected nodes shut
down. Curves in Figure 6.6 represent decreasing data availability in graphs
with increasing number of nodes down. The curves are almost identical to
curves that represent the largest component size (Figure 6.3). The reason is
that the largest component almost always contains at least one data source
and very small fraction of other components contains data sources. In other
words, having connection to the largest component is more or less equivalent
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Figure 6.6: Data availability in graph with 100 data sources

to having (probably indirect) connection to some data source.
Figures 6.7 and 6.8 show average and maximum distance from data in

graph with 100 data sources. When random nodes are shut down, both dis-
tances slowly increases until 90% of nodes are down. Then the distances drop
down quickly, because components with data sources become small. Differ-
ent situation appears when the most connected nodes are shut down. The
distances then increase until 23% of nodes (i.e. all nodes with 12 neighbours
or more and half of nodes with 11 neighbours) are down. At this point,
the distances become extremely high – maximum path length in such graph
exceeds 150! We have not done detailed analysis of this graph, so we do
not know reasons for such extreme values. What we know is that after 23%
of nodes being down, the graph splits into many small components and the
average and maximum distance from data decreases drastically.

The results of our measurements make us believe that Turtle could suc-
cessfully operate in the real life. The volume of data transferred over the
network should not be higher than 10 times more than it would take in nor-
mal peer-to-peer network, where data travel directly between endpoints. The
network seems to be resistant to removing few percent of highly connected
nodes or removing lots of random nodes. Only nodes with single neighbour
are in danger of being easily disconnected from the network.
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Chapter 7

Conclusions and future work

In this thesis we have described Turtle, a peer-to-peer architecture for safe
sharing of sensitive data. In order to achieve strong privacy guarantees,
Turtle organizes the data sharing overlay on top of pre-existing user trust
relationships. This protects the privacy of both data senders and receivers,
as well as the intermediate relay nodes that facilitate the data exchange.
Furthermore, Turtle is resistant to most of the denial of service attacks that
plague existing peer-to-peer data sharing networks.

We have implemented Turtle and tested its performance. The implemen-
tation is efficient – both protocol overhead and CPU load are low. Thanks to
the giFT framework we have a user-friendly GUI, multisource downloading,
hash-links, file metadata and much more.

7.1 Future work

The Turtle, as presented in this thesis, was designed as a proof of concept
network and does not include many features known from contemporary peer-
to-peer networks.

7.1.1 Implementation

In order to have a real-world usable peer-to-peer application, it will be neces-
sary to extend Turtle in many directions. The following list gives an overview
of domains, where Turtle’s lacks are most significant. Especially the first two
of them complicate starting real Turtle network.

Firewalls It is a common problem of peer-to-peer networks, that most par-
ticipants are protected by firewalls that block incoming TCP connec-
tions and limit outgoing connections to a small set of protocols (e.g.
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HTTP). Statistics at [23] show that only about 20% of the total number
of Gnutella nodes are accepting connections. This is not due to fire-
walls only, but they are certainly a contributor to this low number of
hosts that accept connections. In order to support firewalled nodes we
would have to modify communication protocol of Turtle. Modifications
would affect only low-level TCP communication layer.

Dynamic IP addresses Recently it became common practise of ISPs (In-
ternet Service Providers) to assign IP addresses to hosts dynamically
via DHCP (Dynamic Host Configuration Protocol [13]). As a result,
nodes change their addresses frequently, which does not comply with
current Turtle implementation, where IP addresses of neighbours are
configured statically. A partial solution to this problem is simple – a
node, whose address has changed, can still connect to its neighbours
and notify them about the change. Neighbours then update their con-
figuration and start using the new address. This solution does not work
if both neighbour nodes change their address at the same time.

Bandwidth management Our Turtle implementation employs a very sim-
ple bandwidth management scheme. It is possible to limit total band-
width, which is evenly distributed among all Turtle TCP connections.
However current bandwidth management does not support prioritizing
of particular TCP connections, nor does support limits on separate vir-
tual circuits. Because of that, we are not able to limit relayed traffic
to some fraction of total traffic. We are also not able to limit query
traffic in favour of file transfers. Another feature not implemented yet
is calculating expected throughput of file transfers. This information
should be present in query hit packets to allow users to make better
decisions about which download source to choose, if they receive same
query hit from different hosts.

Turtle has been released under GNU Public License at SourceForge web
site as project turtle-p2p[31]. Source code is available via public CVS and
all developers are welcome to contribute.

7.1.2 Protocol design

There are three main areas related to protocol design that could be subject
to further research.

Security properties Although security properties of Turtle offer protection
against many kinds of attacks, there is still space for improvements.
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First vulnerability is caused by the fact, that file data, as they travel
through Turtle network, reside temporarily on intermediary nodes in
un-encrypted form. Even though it is only in memory (in commu-
nication buffers, see Figure 4.9), the memory might get swapped out
to hard-disk, which could compromise the node. A simple solution of
this problem is to encrypt file data at the source node and leave them
encrypted throughout the transfer (in addition to encryption that is al-
ready performed at each hop). If a public/private key protocol is used,
intermediary nodes have no way to determine what they are relaying,
until they begin to actively intercept the protocol.

Second modification we are considering aims at reducing damage that
can be done after security break in one correct Turtle node. Right now
it affects the node itself plus node’s neighbours. By splitting file data
into shares (as in [32]) and transferring them through two different
paths, we could possibly reduce the damage just to invaded node.

Query protocol It has been well documented elsewhere[29] that peer-to-
peer networks cannot scale if they employ simple broadcast querying
scheme. This is why ultrapeers were introduced in Gnutella network
and FastTrack has search and index nodes. We will have to consider
carefully how to extend Turtle’s querying mechanism without harming
anonymity of its users.

Economic model Because of the trust properties of Turtle’s communica-
tion overlay (only nodes that trust each other directly interact), it is
possible to enhance Turtle with an economic model that would en-
courage cooperation and sharing. For example, when sending back a
query hit packet, a node can also include a price tag for supplying the
given item, with each node in the broadcast tree adding its relay fee to
the price tags received from its children. The query initiator can then
use the final price tag as an additional selection criteria when deciding
which data item to request. These payments can be aggregated over
longer intervals, by having Turtle nodes keeping track of the amount
owed to/owed by friend nodes. A node can then periodically report the
“balance sheet” to its owner, who can settle the matter with his friends
by out of band means (e.g. cash exchange).

Simulations In order to verify our expectations about functioning of the
Turtle network, we will have to implement simulator of the network and
run it on the Orkut graph data. In this way we can collect statistics
about network traffic and measure data throughput and latency. We
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can also tune flow control settings of Turtle or possibly reveal some
design mistakes we have made.



Appendix A

Structure of packets

In this appendix, structure of packets used in the Turtle network is described.
All data structures are stored in network byte order (big endian).

A.1 Virtual circuit command packets

All virtual circuit command packets have a fixed length (14 bytes) header
part. Some commands do not require any other information, others have
additional information attached to the packet header. Underlying secure
TCP connection is used as a data stream, packets are not aligned to data
blocks described in Section 4.2.2. If the protocol described here is violated
in any way, underlying TCP connection must be closed immediately.

The circuit control packet gives the receiving side credits for opening
more virtual circuits. This packet is usually sent immediately after the TCP
connection has been established and then after a virtual circuit has been
closed.

Length Description
2 Command (1)
4 Circuit credits
8 Zero padding

Table A.1: The circuit control packet.

The connect packet is a request to open new virtual circuit. It can be
sent only if the sender has at least one circuit credit. The circuit segment
ID must be unique for this TCP connection. Uniqueness is guaranteed by a
simple rule for generating circuit segment IDs, which says that the node with
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the higher node ID generates odd IDs and the node with the lower node ID
generates even IDs.

Length Description
2 Command (2)
4 Circuit segment ID
4 Destination address length
4 Source address length

2–8000 Destination address
2–8000 Source address

Table A.2: The connect packet.

The connected packet can be sent only after connect packet has been
received.

Length Description
2 Command (3)
4 Circuit segment ID
8 Zero padding

Table A.3: The connected packet.

The forward packet transfers data through virtual circuit. Node is not
allowed to send more data through the circuit than how many credits it has
for this circuit.

Length Description
2 Command (4)
4 Circuit segment ID
4 Data length
4 Zero padding

0–16384 Data

Table A.4: The forward packet.

The flow control packet gives the receiving side credits for sending
more data through specified virtual circuit. This packet is usually sent im-
mediately after the virtual circuit has been established and then every time
the node has processed (e.g. forwarded) data received from the circuit.
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Length Description
2 Command (5)
4 Circuit segment ID
4 Data credits
4 Zero padding

Table A.5: The flow control packet.

The close packet is a request to close the virtual circuit. No other packet
except closed packet can be sent after this packet.

Length Description
2 Command (6)
4 Circuit segment ID
8 Zero padding

Table A.6: The close packet.

The closed packet is a final packet of the virtual circuit. No other packet
can be sent after this packet.

Length Description
2 Command (7)
4 Circuit segment ID
8 Zero padding

Table A.7: The closed packet.

The SAR address packet informs the receiving side about new address
of Service Address Resolver. This packet is usually sent immediately after the
TCP connection has been established. Stateless anonymous address should
be used.

Length Description
2 Command (8)
4 SAR address length
8 Zero padding

4–8000 SAR address

Table A.8: The SAR address packet.
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A.2 Service Address Resolver packets

Packets described in this section are sent via virtual circuit established from
arbitrary service to SAR. More requests can be sent on one circuit.

The service list request packet is sent to SAR to get list of services. SAR
always replies with the service list reply packet.

Length Description
4 Command (1)
4 Length (0)

Table A.9: The SAR service list request packet.

The service list reply packet is sent by SAR as a reply to the service list
request packet. Service list might be empty.

Length Description
4 Command (2)
4 Service list length

0–102392 Service list (concatenation of ASCIIZ strings)

Table A.10: The SAR service list reply packet.

The service address request packet is sent to SAR to get anonymous
address of a service. Name of service is without trailing zero. SAR replies
with the service address reply packet or with the unknown service packet.

Length Description
4 Command (3)
4 Service name length

1–256 Service name

Table A.11: The SAR service address request packet.

The service address reply packet is sent by SAR as a reply to the service
address request packet. Stateless anonymous address should be used.
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Length Description
4 Command (4)
4 Service address length

4–8000 Service address

Table A.12: The SAR service address reply packet.

The unknown service packet is sent by SAR as a reply to the service
address request packet when requested service is not registered at SAR.

Length Description
4 Command (0)
4 Length (0)

Table A.13: The SAR unknown service packet.

A.3 Query Service packets

Query Service packets are sent via virtual circuits established between Query
Sender and Query Receiver of neighbour nodes. The circuits are permanently
opened and used for transferring packets until one of the neighbours is shut
down.

Query packet is sent from Query Sender to Query Receiver and contains
query or possibly multiple versions of the query. A node evaluating the query
should find the first version that has known type (i.e. the node understands
how to evaluate the query). Currently there is only one query type (basic),
but in the future we might add for example XML querying. In such case
query packets would contain XML query as first, preferred, version and then
simplified basic query. Nodes that would support XML querying could evalu-
ate XML query, other nodes would evaluate basic query. Each query version
begins with one byte query type followed by type-dependent data.
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Length Description
8 Query ID
1 Packet time-to-live
1 Query version count
4 Total length of all query versions

for each 4 Starting position of query
version version in data part
for each 1–16384 Data of query version
version

Table A.14: The query packet.

Basic queries are transferred in the form of a parse tree. Query parse tree
has internal nodes and leaf nodes. An internal node represents an expression
with logical operator and has one or two subtrees. Expressions with binary
operator (AND, OR) have two subtrees, expressions with unary operator (NOT)
have only one (left) subtree. Right subtree must have zero length in that
case.

Length Description
2 Logical operator (see Table A.17)
2 Left subtree length in bytes
2 Right subtree length in bytes

0– Left subtree
0– Right subtree

Table A.15: Internal node of query parse tree.

Leaf node represents basic formula with attribute name, relational op-
erator and possibly attribute value. Attribute value is missing for unary
operators (EXISTS) and must have zero length. Note that simple query with
no logical operator contains only one – leaf – node and no internal nodes.
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Length Description
2 Relational operator (see Table A.17)
2 Attribute name length in bytes
2 Attribute value length in bytes

0– Attribute name
0– Attribute value

Table A.16: Leaf node of query parse tree.

Table A.17 gives an overview of all operators that might be used in basic
queries. Operator ID allows to distinguish between internal node and leaf
node when reading basic query from a query packet.

Operator Type Arity ID
AND logical binary 0x0001
OR logical binary 0x0002
NOT logical unary 0x4003
< relational binary 0x8004

<= relational binary 0x8005
== relational binary 0x8006
>= relational binary 0x8007
> relational binary 0x8008
= relational binary 0x8009

EXISTS relational unary 0xc00a

Table A.17: The query operators.

Query hit packet is sent from Query Receiver to Query Sender and con-
tains information about single query hit. The information consists of set of
attributes and their values followed by the anonymous address of File Sender,
which can be used to download the file. Currently there are two mandatory
attributes defined: “name” is name of the file and “length” is length of the
file.
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Length Description
8 Query ID
1 Packet time-to-live
4 Expected download bandwidth in kbps
2 Length of attribute section
2 Attribute count
4 Length of address

for each 2 Starting position of attribute name
attribute in attribute section

2 Starting position of attribute value
in attribute section
(attribute section)

for each 0–255 Name of attribute
attribute 0–255 Value of attribute

4–8000 Address of file sender

Table A.18: The query hit packet.

A.4 File Service packets

File Service packets are sent via virtual circuit established between File Re-
ceiver and File Sender. Multiple requests can be sent on one circuit.

The file request packet is sent by File Receiver to get file data. Name of
the file is without trailing zero. File Sender replies with the file reply packet.

Length Description
4 Command (1)
4 Length of the whole packet
4 Position where to start download
4 Maximum bytes to download

1–255 Name of file

Table A.19: The file request packet.

The file reply packet contains the requested file data. Their length is
never higher than what was requested – even if the file does not fit into reply
packet. If any error occurs or if starting position is higher than the file length,
the file reply packet must not contain any data in file data section.
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Length Description
4 Command (2)
4 Length of the whole packet
4 Error code
4 Position where the download starts

0– File data

Table A.20: The file reply packet.
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